Switching costs
 Customer Acquisition and Retention

1. Introduction

Switching costs create lock-in
Lock-in increases price
Competition decreases price
ISP Market
ISP subscriber acquisition
Switching costs for on-line banking
Customer acquisition costs (CACs)
Lifelong relationship

2. ISP Market

(i) ISP market entry

Barriers to entry
Low barriers in ISP market relative to telephone market
Low FC and MC
Must grow business: acquire an installed base
(ii) ISP Market structure and pricing

Low entry barriers
Low market concentration
Many players with homogeneous service
Competitive structure
Access price close to MC

3. Subscriber Acquisition in ISP Market

What happens when competition meets lock-in?
Vigorous competition: no excess profit
Lock-in: subscribers are valuable asset
(i) Competition and lock-in

Competition to get initial customers
Customers are locked in
Competition
forces out above-normal profits (above-normal RoR)
on life-cycle basis
Firms invest (I) to acquire customers
Recoup I from profitable sales to locked-in customers

3. Subscriber Acquisition in ISP Market

(ii) Model of ISP's customer acquisition

Review of financial economics
Time value of money
Present value of a perpetuity (infinity): $\mathrm{PV}=\mathrm{A} / \mathrm{i}$
Market setting
Consumer considers ISP choice
Consumer committed because of switching costs
Switching costs confer market power on ISP
Future profit (π) stream is an asset
ISPs compete in advance for π : discounts and inducement

3. Subscriber Acquisition in ISP Market

Assumptions

$\mathrm{c}=\mathrm{MC}$ of Internet access
Competitive market
one 'new' ISP, many 'old' ISPs
homogeneous service

$$
\mathrm{p}=\mathrm{c}
$$

switching costs: s
inducement is discount: d

3. Subscriber Acquisition in ISP Market

Consumer's loss function: L

$$
\mathrm{L}= \begin{cases}\mathrm{p}+\mathrm{s}-\mathrm{d}: & \text { switch } \\ \mathrm{p}: & \text { no switch }\end{cases}
$$

Static switching condition ($1^{\text {st }}$ month at $\mathrm{t}=0$)

$$
\mathrm{p}+\mathrm{s}-\mathrm{d}<\mathrm{p}
$$

Dynamic switching condition (PV of future payment)

$$
\mathrm{p}+\mathrm{s}-\mathrm{d}+\mathrm{p} / \mathrm{i}<\mathrm{p}+\mathrm{p} / \mathrm{i}
$$

Indifferent consumer

$$
\begin{aligned}
& \mathrm{p}+\mathrm{s}-\mathrm{d}+\mathrm{p} / \mathrm{i}=\mathrm{p}+\mathrm{p} / \mathrm{i} \\
& \mathrm{~d}=\mathrm{s}
\end{aligned}
$$

3. Subscriber Acquisition in ISP Market

Competition forces $\operatorname{PV}(\pi)=0$
ISP's cash flow

$$
\begin{aligned}
& p-c-d+(p-c) / i=0 \\
& p-c+(p-c) / i=d=s
\end{aligned}
$$

$\mathrm{p}=\mathrm{c}+(\mathrm{i} /(1+\mathrm{i})) \mathrm{s}: \mathrm{p}$ includes markup proportional to the switching cost
$\mathrm{p}>\mathrm{c}:$ quasi profit

3. Subscriber Acquisition in ISP Market

(iii) Model of ISP's acquisition with advertising Other revenues such as advertising
Large discounts acquire installed base
Large base means more advertising revenue Maybe set p below MC
Assume advertising revenue $=\mathrm{a}$

3. Subscriber Acquisition in ISP Market

Zero economic profit condition

$$
\begin{aligned}
& p+a-c-d+((p+a-c) / i)=0 \\
& p=c-a+(i /(1+i)) s: \text { with advertising } \\
& p=c+(i /(1+i)) s: \text { without advertising } \\
& a>(i /(1+i)) s: A O L
\end{aligned}
$$

3. Subscriber Acquisition in ISP Market

Summary

Luck-in meets competition
Competition on life-cycle basis
firms earn a normal RoR
Margins on installed base are quasi-profit
look like profit at a point in time
but are normal RoR on prior I
How to make revenue?
Cost down (cost leadership)
Service differentiation

4. Switching Costs and Fee Competition in

Online Banking

Online banking services include
Automated bill payments
Email alerts for bill payment
Detailed reports for statements
Periodic account statements
Online trading and advice
Online approvals

4. Switching Costs and Fee Competition in

Online Banking

(i) Assumptions

Banks must lower fees substantially
Banks: $\mathrm{i}=1,2$
Bank i oriented customers: $\mathrm{n}_{2}>\mathrm{n}_{1}$
Fees: p_{i}
Switching cost: s_{i}
MC of maintaining an account: $\mathrm{MC}_{\mathrm{i}}=0$

4. Switching Costs and Fee Competition in

Online Banking

Utility of a Bank i oriented customer

$$
u_{i}=\left\{\begin{array}{l}
-p_{i} \\
-p_{j}-s_{i}
\end{array}\right.
$$

stay with i
switch from ito j
q_{i} : number of customers account with bank i

$$
\mathrm{q}_{1}=\left\{\begin{array}{l}
0 \\
\mathrm{n}_{1} \\
\mathrm{n}_{1}+\mathrm{n}_{2}
\end{array}\right.
$$

$$
\text { if } \mathrm{p}_{1}>\mathrm{p}_{2}+\mathrm{s}_{1}
$$

$$
\text { if } \mathrm{p}_{2}-\mathrm{s}_{2} \leq \mathrm{p}_{1} \leq \mathrm{p}_{2}+\mathrm{s}_{1}
$$

$$
\text { if } \mathrm{p}_{1}<\mathrm{p}_{2}-\mathrm{s}_{2}
$$

4. Switching Costs and Fee Competition in

Online Banking

(ii) Undercut-Proof equilibrium (UPE)

Nash Equilibrium does not exist for differentiated brands

Use UPE for differentiated brands
In an UPE, each firm choose its price to max profit while ensuring that its price is sufficiently low that any rival firm would not find it profitable to set a lower price in order to grab all of the $1^{\text {st }}$ firm's customers

4. Switching Costs and Fee Competition in

Online Banking

Bank 1 undercuts bank 2 when
$\mathrm{p}_{1} \leq \mathrm{p}_{2}-\mathrm{s}_{2}$: subsidize customer switching cost s_{2}
UPE is a pair of price $\left(p_{1}{ }^{u}, p_{2}{ }^{u}\right)$
Bank 1 choose the highest price $p_{1}{ }^{u}$ subject to Bank 2' equilibrium profit $\pi_{2}{ }^{4} \geq$ the profit level when it undercuts $p_{1}{ }^{4}$ and grabs all customers
Bank 2' equilibrium profit $\pi_{2}{ }^{u}$ must be higher than any other p_{2} that undercuts p_{1} and grabs all customers

$$
\text { i.e., } \pi_{2}{ }^{u}=p_{2}{ }^{u} q_{2}{ }^{u} \geq\left(p_{1}-s_{1}\right)\left(n_{1}+n_{2}\right)
$$

4. Switching Costs and Fee Competition in Online Banking

$$
\pi_{2}{ }^{\mathrm{u}}=\mathrm{p}_{2}{ }^{\mathrm{u}} \mathrm{q}_{2}{ }^{\mathrm{u}} \geq\left(\mathrm{p}_{1}-\mathrm{s}_{1}\right)\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)
$$

$$
\text { In an UPE, } \mathrm{q}_{1}^{\mathrm{u}}=\mathrm{n}_{1} \text { and } \mathrm{q}_{2}^{\mathrm{u}}=\mathrm{n}_{2}
$$

$$
\mathrm{s}_{1}=\mathrm{p}_{1}-\mathrm{p}_{2} \mathrm{n}_{2} /(\mathrm{n} 1+\mathrm{n} 2)
$$

Figure 1: Undercut-Proof equilibrium

5. Internet Acquisition Costs

Success built on traditional methods
Build a good site
Drive traffic to the site
Retain customers
strong repeat buy rates suggest experience by customers
Customer acquisition cost
Online spends 40% of revenues on marketing
Traditional retailer is $7-14 \%$
Customer acquisition cost
total advertising cost/\# of new customers
Installed base gives increasing returns

6. Lifelong Customer Relationship

Low short-term profits build installed base
First-mover advantage
Spend \$ to acquire customers
Payback on investment can be quite rapid

6. Lifelong Customer Relationship

(i) Locking up key real estate Deals drive traffic to site Amazon.com spent \$50M/yr Amazon.com/AOL deal

Assume 40M page/day views on AOL
Amazon.com has 30\% presence
Net revenue/day: \$18,900
($40 \mathrm{M} \times .3$)(. 25% click-thru rate) $(1.5 \%$ buy rate) $(\$ 45)$
= \$18,900
Average marketing expenditure/day: $\$ 17,300$

6. Lifelong Customer Relationship

(ii) Aggressive advertising campaigns

E*Trade (us.etrade.com) advertises through www, TV, print media
Customer acquisition cost: $\$ 75$
Gross profit/customer/year: \$250
(iii) Frictionless marketing

Hotmail
www.bluemountain.com: greeting card service
(iv) Active marketing

Existing customers recruit new customers
Amazon.com: Associate member refer services

7. Conclusions

Lock-in meets competition
Advertising revenue compensates inducements
Methods for estimating switching costs
Customer acquisition costs
Lower profits in shortrun
Build relationships, awareness

